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Abstract. We study the current-algebra approach to the Gerasimov-Drell-Hearn sum rule, paying par-
ticular attention to the infinite-momentum limit. Employing the O(α2) Weinberg-Salam model of weak
interactions as a testing ground, we find that the legitimacy of the infinite-momentum limit is intimately
connected with the validity of the naive equal-times algebra of electric charge densities. Our results con-
siderably reduce the reliability of a recently proposed modification of the Gerasimov-Drell-Hearn sum rule,
originating from an anomalous charge-density algebra.

1 Introduction

Exciting results on the spin structure of the proton derived
from deep inelastic scattering experiments with polarized
muons and protons brought the attention of particle physi-
cists back to a rather old issue: by general arguments of
field theory and particle theory there is a relation between
a particle’s anomalous magnetic moment and an integral
of a particular combination of the spin-dependent pho-
toabsorption cross sections of that particle.

For the nucleon, this relation is given by the Gerasi-
mov-Drell-Hearn (GDH) sum rule [1,2], a direct experi-
mental test of which being in progress at several accelera-
tors. Yet there are estimates taken in an indirect fashion
from pion-photoproduction data [3–7]. Since the integral
in question runs over all photon energies, one has to ex-
trapolate the data, and even certain model assumptions
about multi-particle final states have to be made. Never-
theless, a definite discrepancy, particularly for the proton-
neutron difference, remains outside reasonable uncertain-
ties, thus leading to a basic problem for photo-hadron
physics.

In view of this situation, various proposals to alter the
GDH sum rule have been published [8–10]. In this article
we point to a general difficulty which all of these attempts
encounter.

The GDH sum rule was originally derived from disper-
sion theory [1,2]. Conventional Regge phenomenology pre-
dicts the dispersion integral to converge [11] (see also [12]),
which has to do with moving Regge poles only. However,
as Abarbanel and Goldberger [13] pointed out, a possible
fixed pole at angular momentum J = 1 would modify the
sum rule by an additive constant – essentially the residue
of the fixed pole. We stress that it is by no means evi-
dent that the fixed pole should be absent. On the other

hand, there is as yet no reliable model prediction for the
magnitude of its residue.

Alternatively, by the current-algebra approach,
the GDH sum rule was founded on the completeness sum
in the infinite-momentum limit [14,15], assuming that the
operators of electric charge densities commute at equal
times. A few attempts to go beyond this assumption can
be found in the literature [8–10]. However, these investi-
gations suffer from a severe deficiency which has not been
noted before: the infinite-momentum limit is handled in
a naive way, the legitimacy of which cannot be based on
current algebra alone – it enters as a mere conjecture.

In the present article, we analyze the significance of the
problems connected with the infinite-momentum limit in
some detail. To this end, we firstly derive the form that the
GDH sum rule gets without taking the infinite-momentum
limit. We call this equation the finite-momentum GDH
sum rule. It is formulated in terms of the (timelike) virtual
forward Compton amplitude of the nucleon, or any other
fermion under consideration. To examine the legitimacy
of the infinite-momentum limit, we need a perturbative
model that allows us to calculate the Compton amplitude
for all values of the photon’s energy and virtuality. Unfor-
tunately, for the nucleon there is no realistic model that
works in the relevant kinematical domain. Therefore, fol-
lowing [16], we take the external fermion to be an elec-
tron and employ the O(α2) Weinberg-Salam model, i.e.
the standard model of electroweak interactions of leptons
to the fourth order of perturbation theory. To this order,
tree-level and one-loop Feynman graphs involving e−, νe,
γ, W±, Z0, and Higgs as internal particles are to be worked
out.

We obtain a non-vanishing charge-density commutator
due to the presence of the triangle anomaly, giving rise to a
modification of the finite-momentum GDH sum rule. Our
key result, however, is that if the infinite-momentum limit
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is handled with care, it brings about a second modification
which exactly cancels the previous one, hence leaving the
(infinite-momentum) GDH sum rule unaltered.

We are thus led to the conclusion that the infinite-
momentum limit has to be regarded as being just as crit-
ical as the charge-density commutator, especially in the
presence of anomalous commutators. This fact greatly re-
duces the reliability of any proposed modification of the
GDH sum rule.

After some preliminaries in Sect. 2, we review in Sect. 3
the dispersion-theoretic approach to the GDH sum rule.
Section 4 gives the derivation of the finite-momentum
GDH sum rule. Section 5 introduces the O(α2) Weinberg-
Salam model and presents the modifications brought about
by charge-density algebra and infinite-momentum limit.

2 Preliminaries

Throughout this paper, M , Z, and κ denote the nucleon’s
mass, charge (in units of e), and anomalous magnetic mo-
ment (in units of µN), respectively, and α = e2/4π is
the fine-structure constant. One-nucleon states |p, λ〉 with
four-momentum p and helicity λ = ±1/2 are normalized
covariantly, 〈p, λ|p′, λ′〉 = (2π)3 2p0δ3(p − p′)δλλ′ . Spinors
u(p, λ) are normalized as ū(p, λ)u(p, λ) = 2M δλλ′ . Be-
sides this helicity basis, we use states |p, s〉 and spinors
u(p, s) with arbitrary spin four-vector s obeying s2 = −1,
p·s = 0, and ū(p, s)γµγ5u(p, s) = 2Msµ. Helicity eigen-
states are those for which the three-vectors p and s are
collinear. For details we refer to the textbooks, e.g. [17,
Sect. 2-2]. We adopt the conventions ε123 = ε0123 = +1
and γ5 = iγ0γ1γ2γ3.

We consider the virtual forward Compton amplitude

Tµν(p, q, s) = i

∫
d4x eiq·x〈p, s|TJµ(x)Jν(0)|p, s〉. (1)

Its antisymmetric part has the invariant decomposition

1
2

(Tµν − T νµ) = − i

M
εµνρσqρsσA1(ν, q2)

− i

M3 εµνρσqρ

(
(Mν)sσ − (q·s)pσ

)
A2(ν, q2), (2)

where ν = p·q/M is the lab-frame energy of the photon.
In the current-algebra approach to the GDH sum rule, the
linear combination

f2(ν, q2) =
α

2M2

(
A1(ν, q2) +

q2

Mν
A2(ν, q2)

)
(3)

of the dimensionless invariant amplitudes A1,2(ν, q2) emer-
ges naturally. For real photons we define as usual f2(ν) ≡
f2(ν, 0).

3 Dispersion-theoretic approach
to the GDH sum rule

We now remind to the original dispersion-theoretic ap-
proach of [1,2], which assumes an unsubtracted dispersion

relation for the forward Compton amplitude f2(ν),

Re f2(ν) =
2
π

P
∞∫

ν0

ν′ dν′

ν′2 − ν2
Im f2(ν′). (4)

The constant ν0 = mπ + m2
π/2M is the pion-photopro-

duction threshold, and P denotes principal value integra-
tion, which can be omitted in case ν < ν0. Taking ν = 0
in (4) yields

f2(0) =
2
π

∞∫
ν0

dν′

ν′ Im f2(ν′). (5)

The GDH sum rule

−2π2ακ2

M2 =

∞∫
ν0

dν

ν

(
σ1/2(ν) − σ3/2(ν)

)
(6)

is obtained from (5) by using the low-energy theorem of
Low [18] and Gell-Mann and Goldberger [19],

f2(0) = − ακ2

2M2 , (7)

and the optical theorem for the imaginary part of the for-
ward amplitude,

8π Im f2(ν) = σ1/2(ν) − σ3/2(ν). (8)

Here, σ1/2(ν) and σ3/2(ν) denote the photoabsorption
cross sections of the nucleon for total photon-nucleon he-
licities 1/2 and 3/2, respectively.

The validity of the unsubtracted dispersion relation
(4) requires not only the imaginary part of f2(ν) to van-
ish sufficiently rapid at large ν in order that the integral
will converge. Besides, the real part has to vanish too,
which means f2(∞) = 0. That this need not necessar-
ily be the case was shown by Abarbanel and Goldberger
[13]. In Regge language, a possible non-vanishing f2(∞)
is equivalent to a J = 1 fixed pole in angular-momentum
plane.

The easiest way to see what modification is brought
about by a non-vanishing f2(∞), is to write down a sub-
tracted dispersion relation,

Re f2(ν) − f2(0) =
2
π

P
∞∫

ν0

ν2 dν′

ν′(ν′2 − ν2)
Im f2(ν′). (9)

Letting ν approach infinity now, one gets

f2(0) =
2
π

∞∫
ν0

dν′

ν′ Im f2(ν′) + f2(∞). (10)

This gives rise to a finite modification of the GDH sum
rule. Note that the subtraction here was not enforced by
a divergent integral, in which case it would have been im-
possible to drag the limit ν → ∞ inside the ν′ integral in
(9).

We emphasize that to our knowledge, there is no fun-
damental reason requesting the constant f2(∞) to vanish!
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4 Current-algebra approach –
the finite-momentum GDH sum rule

In this section we remind the reader to the current-algebra
derivation of the GDH sum rule, which is based essentially
on two premises. Firstly, electric charge densities are as-
sumed to commute at equal times. Secondly, one assumes
that taking the infinite-momentum limit is legitimate. We
stress that there are ansätze [8–10] that weaken the former
assumption, but the latter one has never been questioned
seriously.

We follow the idea of Hosoda and Yamamoto [14], but
we postpone the infinite-momentum limit to the very end
of the calculation in order to shed some light on its mean-
ing. For the sake of transparency, we explicitly write down
some formulae which are known from the literature, e.g.
[17].

From causality arguments, the equal-times commuta-
tor [J0(x, 0), J0(y, 0)] of electric charge densities must be
a finite sum over derivatives of the delta function δ3(x−y).
Here we start from the naive commutator

[J0(x, 0), J0(y, 0)] = 0, (11)

which can formally be obtained by writing J0(x) =
∑

f Zfq
†
f

(x)qf(x) and employing canonical anticommutation rela-
tions among quark fields q†

f (x), qf(x). We define the oper-
ator of the electric dipole moment as usual,

Di(x0) = e

∫
d3x xiJ0(x), (12)

and sandwich the commutator of components D±(0) ≡
(D1(0) ± iD2(0))/

√
2 between one-nucleon states of posi-

tive helicity, taking the incoming nucleon to be traveling
along the x3-axis, pµ = (p0, 0, 0,

√
(p0)2 − M2),

〈p′, 1
2 |[D+(0), D−(0)]|p, 1

2 〉 = 0. (13)

We now insert a complete set of intermediate states
and separate the one-nucleon states from the continuum.

In terms of form factors F1,2(q2) with normalization
F1(0) = Z, F2(0) = κ, the one-nucleon matrix element of
the dipole-moment operator reads

〈k, λ|Di(0)|p, 1
2 〉 = ie (2π)3 ∇iδ3(q)

×u†(k, λ)
(

F1(q2) + γ·q F2(q2)
2M

)
u(p, 1

2 ), (14)

where q = k−p. Therewith, the one-nucleon intermediate-
state contribution to the matrix element (13) is obtained
straightforwardly,

〈p′, 1
2 |[D+(0), D−(0)]|p, 1

2 〉one−nucleon

=
∑

λ=± 1
2

∫
d3k

(2π)32k0 〈p′, 1
2 |D+(0)|k, λ〉〈k, λ|D−(0)|p, 1

2 〉

− {+ ↔ −}
= (2π)3 2p0 δ3(p′ − p)

(
2πακ2

M2 − 2πα(Z + κ)2

(p0)2

)
. (15)

Here we stress the presence of the second term, which van-
ishes in the infinite-momentum limit. Hitherto, its only
appearance in the literature was in [20], where it was in-
correct.

On the other hand, the continuum contribution, i.e.
the sum over all intermediate states |I〉 except the one-
nucleon state, can be obtained by virtue of current conser-
vation ∂µJµ(x) = 0, which implies Ḋi(x0) = e

∫
d3xJ i(x),

and using translational invariance to carry out the spatial
integrations,

〈p′, 1
2 |[D+(0), D−(0)]|p, 1

2 〉cont

=
∑

I

′〈p′, 1
2 |D+(0)|I〉〈I|D−(0)|p, 1

2 〉 − {+ ↔ −}

= (2π)3 δ3(p′ − p)
∑

I

′
(2π)3 δ3(pI − p)

×4πα|〈p, 1
2 |J+(0)|I〉|2

(p0 − p0
I )2

− {+ → −}. (16)

The ± components of the current are defined by J±(x) ≡
(J1(x)±iJ2(x))/

√
2. Introducing the timelike virtual pho-

ton momentum q with q = 0, we can substitute δ3(pI −
p) =

∫ ∞
q0
thr

dq0 δ4(pI − p − q), where the pion-production

threshold q0
thr ≡ Mνthr/p0 is determined by (p + qthr)2 =

(M + mπ)2. For p0 → ∞, νthr approaches the familiar
pion-photoproduction threshold ν0 = mπ + m2

π/2M .
We can now express the continuum contribution in

terms of the forward virtual Compton amplitude f2(ν, q2),
(3),

〈p′, 1
2 |[D+(0), D−(0)]|p, 1

2 〉cont

= (2π)3 2p0 δ3(p′ − p)

∞∫
q0
thr

dq0

q0

α

p0q0

×
∫

d4x eiqx〈p, 1
2 |J+(x)J−(0)|p, 1

2 〉 − {+ ↔ −}

= (2π)3 2p0 δ3(p′ − p) 8

∞∫
νthr

dν

ν
Im f2

(
ν,

M2ν2

(p0)2

)
.(17)

Since the one-nucleon part (15) and the continuum
part (17) sum up to give the commutator matrix element
(13), we conclude

−2π2ακ2

M2 +
2π2α(Z + κ)2

(p0)2

=

∞∫
νthr

dν

ν
8π Im f2

(
ν,

M2ν2

(p0)2

)
. (18)

We call this equation the finite-momentum GDH sum rule.
It is based solely on the naive charge-density commutator
(11), or on the weaker assumption presented by (13). In
particular, the integral on the right-hand side of (18) con-
verges, since it relies only on the validity of the complete-
ness relation for the physical intermediate states. This is
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Fig. 1. The integration path of the finite-momentum GDH
sum rule (18) in the (ν, q2) plane for nucleon energy p0 = M
and p0 = 2M . The heavy line represents the pion-production
threshold

�
Fig. 2. Intermediate hadron states in virtual Compton scat-
tering, leading to singularities in the photon mass q2

irrespective of the convergence of the genuine GDH inte-
gral with its integrand 8π Im f2(ν, 0)/ν. The integration
path in the (ν, q2) plane for various values of the energy
p0 is depicted in Fig. 1. Note that for any finite value of
p0 this path is a parabola that extends to arbitrarily high
timelike photon virtualities.

Taking the infinite-momentum limit now constitutes
the last but one step of the derivation of the GDH sum
rule,

−2π2ακ2

M2 = lim
p0→∞

∞∫
νthr

dν

ν
8π Im f2

(
ν,

M2ν2

(p0)2

)
. (19)

To get the usual form of the sum rule one now has to
interchange the limit p0 → ∞ with the ν integration. If
the properties of the function Im f2(ν, q2) allow the limit
to be dragged into the integral, the GDH sum rule follows
from (19) with the help of the optical theorem (8). In
principle, however, permuting limit and integration could
give rise to a (finite or infinite) modification of the sum
rule. We stress that current algebra has no answer to this
problem.

Nevertheless, one can easily see the origin of possible
difficulties on quite general grounds. We recall that the
timelike virtual Compton amplitude meets singularities
in the photon mass q2 due to intermediate hadron states,
as indicated in Fig. 2. Thus one expects for the amplitude

f2(ν, q2) a spectral representation of the form

Im f2(ν, q2) =
1
π

∞∫
q2
0

dq′2

q2 − q′2 ρ(ν, q′2), (20)

where q2
0 is the mass of the lowest-lying state that couples

to the photon. Inserting (20) into (19), it is evident that for
finite p0, the ν integration also meets the q2 singularities,
since q2 = M2ν2/(p0)2. Only if one can drag the limit
p0 → ∞ inside the integral in (19), these singularities
play no explicite role.

In the following section we will show, by adopting a
concrete model, that indeed non-trivial modifications of
the current-algebra arguments are to be expected.

5 The finite-momentum GDH sum rule
within the O(α2) Weinberg-Salam model

We now examine the finite-momentum GDH sum rule and
the infinite-momentum limit for the Compton amplitude
of the electron within the O(α2) Weinberg-Salam model.
Let m and MZ denote the mass of the electron and the Z0

boson, respectively. For simplicity, we will take the Wein-
berg angle θW to be such that the coupling of the Z0 boson
to electrons is purely axial-vector, i.e. sin2 θW = 1/4. The
Fermi constant is then given by GF/

√
2 = 8πα/3M2

Z. We
will expand in the coupling constant e only, regarding all
masses as given parameters, thus m2GF will be of order
α.

In 1972, Altarelli, Cabibbo, and Maiani [16] investi-
gated the GDH sum rule for the O(α2) Weinberg-Salam
model by calculating the forward amplitude f2(ν) for the
real Compton process and checking explicitly that it obeys
an unsubtracted dispersion relation. The Feynman graphs
up to order α2 are presented in Fig. 3. The tree graphs (a),
as well as the contact graph (e) and the Higgs-exchange
graphs (f), do not contribute to the antisymmetric piece
of the Compton amplitude Tµν , thus having no effect on
f2(ν). As will be demonstrated below, in the case of a real
photon also the Z0-exchange graphs of Fig. 3g vanish. In
view of the fact that the anomalous magnetic moment κ
of the electron is of order α, the left-hand side of the GDH
sum rule (6) is of order α3, so that to order α2 it reads

0 =

∞∫
0

dν

ν
Im f2(ν). (21)

This relation is proven in [16] (see also [21]). Since dν/ν =
d(ln ν), (21) is reflected by the equality of the shaded areas
in Fig. 4, which shows the QED contribution to the func-
tion 8π Im f2(ν) = σ1/2(ν) − σ3/2(ν), i.e. the contribution
due to the e−γ intermediate states of Fig. 3b.

Here we address the question whether the current-
algebra approach to the GDH sum rule also works within
the O(α2) Weinberg-Salam model. To be precise, we will
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Fig. 3. Feynman graphs contributing to the forward Compton amplitude of the O(α2) Weinberg-Salam model; solid lines
represent e− and νe, wavy lines are the gauge bosons γ, Z0, and W±, and a dashed line is the Higgs boson. a tree graphs; b e−γ
and e−Z0 intermediate states; c νeW− intermediate state; d e−H intermediate state; e WWγγ contact graph; f Higgs exchange;
g Z0 exchange. The graphs with crossed external photon lines are omitted in b–d. Not shown are external line insertions such
as vacuum polarization

investigate the validity of the naive dipole-moment com-
mutator (13), and the legitimacy of the infinite-momen-
tum limit. We will find that both assumptions are vio-
lated, due to the same Feynman graphs, namely the Z0-
exchange graphs of Fig. 3f. There is a modification of the
finite-momentum GDH sum rule, but this modification is
removed when the infinite-momentum limit is taken, lead-
ing back to the original GDH sum rule (21).

We adopt the Bjorken-Johnson-Low (BJL) technique
[22,23] to work out the one-electron matrix element of the
charge-density commutator. The BJL limit∫

d3x e−iq′·x〈p′, 1
2 |[J0(x, 0), J0(0)]|p, 1

2 〉

= − lim
q′0→∞

q′0T 00(p, p′, q′) (22)

relates the commutator matrix element to the (generally
non-forward) virtual Compton amplitude

e2Tµν(p, p′, q′)

= ie2
∫

d4x eiq′·x〈p′, 1
2 |TJµ(x)Jν(0)|p, 1

2 〉, (23)

which we study perturbatively. All polynomials in q′0, the
so-called seagulls, have to be dropped in this procedure.
A typical seagull is presented by the Feynman graph of
Fig. 3e, which is completely independent of the photon
momenta q and q′.
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Fig. 4. Polarized photoabsorption cross section of the elec-
tron in O(α2) QED. Since dν/ν = d(ln ν), the vanishing of
(the QED contribution to) the integral (21) is reflected by the
equality of the shaded areas

We found that to order α2, only the Z0-exchange graphs
of Fig. 3f contribute. This may not be surprising, since
these fermion triangle graphs are responsible for the fa-
mous Adler-Bell-Jackiw anomaly [24,25]. Details of our
calculation are given in the appendix. The result for the
matrix element of the dipole-moment commutator is non-
vanishing,

〈p′, 1
2 |[D+(0), D−(0)]|p, 1

2 〉
= (2π)3 2p0 δ3(p′ − p)

α

π

GF√
2
, (24)

in contrast to the naive assumption (13). Re-inspecting
now the derivation of the finite-momentum GDH sum rule
presented in the previous section, we infer a modification
given by

0 = α
GF√

2
− lim

p0→∞

∞∫
0

dν

ν
8π Im f2

(
ν,

m2ν2

(p0)2

)
. (25)

Obviously, the GDH sum rule (21) would be violated if
limit and integration were interchangeable. In the follow-
ing we will show that due to the same Feynman graphs
that gave rise to the anomalous commutator (24), drag-
ging the limit inside the integral results in a second mod-
ification that cancels the first one. This means that the
naive infinite-momentum limit is illegitimate here!

To prove this assertion, we calculated the Z0-exchange
contribution to the amplitude f2(ν, q2). Some details are
given in the appendix. The result is independent of the
photon energy ν,

f
(Z)
2 (ν, q2) =

α

4π2

GF√
2

f(q2), (26)

where the function f(q2) can be given explicitly. As ex-
pected, it exhibits a branch-point singularity at the two-
electron threshold q2 = 4m2. Below this threshold one

�1

0

1

0:01 0:1 1 10 100 1000

f(q2)

q2=4m2

Re
Im

Fig. 5. Real part (light line) and imaginary part (heavy line) of
the function f(q2) occurring in the Z0-exchange contribution
f

(Z)
2 (ν, q2) ∝ f(q2) to the virtual forward Compton amplitude

of the O(α2) Weinberg-Salam model

has

Re f(q2) =
4m2√

(4m2 − q2)q2
arccot

√
4m2

q2 − 1 − 1,

(27)
Im f(q2) = 0, (28)

while for q2 > 4m2,

Re f(q2) =
4m2√

(q2 − 4m2)q2
artanh

√
1 − 4m2

q2 − 1,

(29)

Im f(q2) =
2πm2√

(q2 − 4m2)q2
. (30)

This function is depicted in Fig. 5. For real Compton scat-
tering, q2 = 0, there is no contribution,

f
(Z)
2 (ν, 0) = 0, (31)

and hence ∞∫
0

dν

ν
Im f

(Z)
2 (ν, 0) = 0. (32)

However, for timelike photon virtualities above the two-
electron threshold, one has a non-vanishing imaginary part.
We infer from (26) and (30),

∞∫
0

dν

ν
8π Im f

(Z)
2

(
ν,

m2ν2

(p0)2

)
= α

GF√
2
, (33)

which is independent of the electron energy p0. As can be
seen in Fig. 6, the contour of the integration in (33) passes
the singularity line at q2 = 4m2 for any finite value of p0.

The crucial observation now is that interchanging the
ν integration and the p0 → ∞ limit leads to an additive
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Fig. 6. The integration path of the finite-momentum GDH
sum rule of the O(α2) Weinberg-Salam model for electron en-
ergy p0 = m, p0 = 3m, and p0 = 6m. For any finite value of
p0 the integration passes the two-electron threshold q2 = 4m2,
picking up the constant on the right-hand side of (33)

constant
 lim

p0→∞

∞∫
0

dν

ν
−

∞∫
0

dν

ν
lim

p0→∞


 8π Im f2

(
ν,

m2ν2

(p0)2

)

= α
GF√

2
, (34)

due to the Z0-exchange contributions (32) and (33). Com-
bined with the finite-momentum GDH sum rule (25), this
leads back to the undisturbed GDH sum rule (21).

We remark that if quarks are included into the model,
then the customary effect of anomaly cancellation removes
the modification of the charge-density commutator as well
as the one due to the infinite-momentum limit.

6 Summary and conclusion

We presented a derivation of the GDH sum rule from
the equal-times commutator of electric charge densities.
Our derivation exhibits the infinite-momentum limit as its
last step. The finite-momentum GDH sum rule (18) gives
the form that the sum rule takes without performing the
infinite-momentum limit. We emphasized the fact that in
principle, taking the infinite-momentum limit could give
rise to a modification of the GDH sum rule, and that cur-
rent algebra alone cannot tell whether such a modification
is present or not.

To get a feeling for what can happen when taking
the infinite-momentum limit, we considered virtual Comp-
ton scattering off the electron within the Weinberg-Salam
model of weak interactions to order α2. We found that in
this model the infinite-momentum limit does indeed give
rise to a certain finite modification of the GDH sum rule,
which comes together with (and is cancelled by) another
modification due to an anomalous charge-density commu-
tator.

The coincidence of these modifications leads us to the
conclusion that any proposal of a modification of the GDH

sum rule suggested from an anomalous charge-density
commutator that has no regard to the legitimacy of the
infinite-momentum limit (such as [10]) is to be seriously
doubted!

A The Z0-exchange contributions

This appendix shall describe the calculation of the dipole-
moment commutator matrix element (24) from the BJL
formula (22), originating, to order α2, from the Z0-ex-
change graphs of Fig. 3f. Also, the calculation of the con-
tribution (26) of these graphs to the forward amplitude
f2(ν, q2) is illustrated. The relevant Feynman integrals
have been worked out by Rosenberg [26] and were dis-
cussed further by Adler [24].

We are concerned with the (generally non-forward)
Compton amplitude

e2Tµν(p, p′, q′, s, s′)

= ie2
∫

d4x eiq′·x〈p′, s′|TJµ(x)Jν(0)|p, s〉. (35)

The contribution from the Z0-exchange graphs reads

Tµν
(Z) = −M2

ZGF

2
√

2
Rµνρ(q, q′)

×−gρσ + (p′ − p)ρ(p′ − p)σ/M2
Z

(p′ − p)2 − M2
Z

ū(p′, s′)γσγ5u(p, s),

(36)

with

Rµνρ =
∫

d4k

(2π)4
Tr

(
γµ i

/k − m + iε
γν i

/k − /q − m + iε

×γργ5
i

/k − /q′ − m + iε

)
+

{
µ ↔ ν

q ↔ −q′

}
. (37)

The constant M2
ZGF/2

√
2 is due to the coupling of the

Z0 to the electron lines, m and MZ are the masses of e−
and Z0, respectively. The momentum four-vector q of the
incoming photon is fixed by p + q = p′ + q′. This has to
be kept in mind when the q′0 → ∞ limit is taken.

The triangle loop integral (37) can be cast into the
form

Rµνρ = εµνραqαR1 + ενραβq′
αqβ(qµR2 + q′µR3)

+εµνραq′
αR′

1 + εµραβq′
αqβ(q′νR′

2 + qνR′
3), (38)

where R1,2,3 are functions of the Lorentz invariants q2,
q′2, and q·q′. From crossing symmetry, the primed quanti-
ties are given by R′

1,2,3(q
2, q′2, q·q′) ≡ R1,2,3(q′2, q2, q·q′).

Gauge invariance qνTµν
(Z) = 0, q′

µTµν
(Z) = 0, imposes the

condition

R1 + q·q′R2 + q′2R3 = R′
1 + q·q′R′

2 + q2R′
3 = 0. (39)

The crucial point of [26] is the observation that the func-
tions R2,3 are finite, while the formally divergent function
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R1 can be fixed by the gauge-invariance condition (39).
The result is given by the Feynman-parameter integrals

R
(′)
1,2,3(q, q

′) =
i

π2

1∫
0

dx

1−x∫
0

dy (40)

× N
(′)
1,2,3

x(1 − x) q2 + y(1 − y) q′2 − 2xy q·q′ − m2 + iε
,

with the numerators

N1 = x(1 − x) q′2 − xy q·q′, N ′
1 = y(1 − y) q2 − xy q·q′,

N2 = N ′
2 = xy, (41)

N3 = −x(1 − x), N ′
3 = −y(1 − y).

A.1 Anomalous commutator

To compute the matrix element of the dipole-moment
commutator, we need the q′0 → ∞ limit of the time-time
component T 00

(Z). We have, from (38),

lim
q′0→∞

q′0R00ρ (42)

= ε0ραβq′
αqβ lim

q′0→∞
(
(q′0)2(R2 + R′

2 + R3 + R′
3)

)
.

Carrying out the q′0 → ∞ limit in the explicite formulae
(40) and (41), this reduces to

lim
q′0→∞

q′0R00ρ = − i

2π2 ε0ραβq′
αqβ . (43)

Inserting this into (36) and going back to the BJL formula
(22), it is a trivial matter to work out the matrix element
of the charge-density commutator,

〈p′, 1
2 |[J0(x, 0), J0(0)]|p, 1

2 〉 = (44)

−εijk M2
ZGF

4π2
√

2

(p′ − p)i ū(p′, 1
2 )γjγ5u(p, 1

2 ) ∇kδ3(x)
(p′ − p)2 − M2

Z
.

The matrix element (24) of the dipole-moment commuta-
tor is now obtained by using translational invariance and
the properties of the helicity spinor u(p, 1

2 ).

A.2 Infinite-momentum limit

On the other hand, we want to compute the Z0-exchange
contribution to the forward Compton amplitude f2(ν, q2).
To this end, we have to specialize (36) and (38) to the case
p = p′, q = q′, s = s′, giving

Tµν
(Z)(p, q, s) = m

GF√
2

εµνρσqρsσ(R1 + R′
1). (45)

Recalling the invariant decomposition (2), we notice that
Z0 exchange contributes to A1(ν, q2) only,

A
(Z)
1 (ν, q2)

= −m2

π2

GF√
2

1∫
0

dx

1−x∫
0

dy
(x + y)(1 − x − y) q2

(x + y)(1 − x − y) q2 − m2 + iε

=
m2

2π2

GF√
2

f(q2), (46)

where

f(q2) = −2

1∫
0

dz
z2(1 − z) q2

z(1 − z) q2 − m2 + iε
. (47)

This implies (26) via relation (3). The z integration can
be performed explicitly, giving formulae (27)–(30).

Finally, it is perhaps worth noting that the exact can-
cellation of the two modifications of the GDH sum rule
can be traced back to the gauge-invariance condition (39),
which relates the function R1 occurring in (45) to the func-
tions R2,3 of (42).
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